
Chapter 11. Arithmetic
Building Blocks

A Generic Digital Processor

MEM ORY

DATAPATH

CONTROL

IN
PU

T
-O

U
T

PU
T

Building Blocks for Digital Architectures
Arithmetic unit
Bit-sliced datapath (adder, multiplier, shifter,

comparator, etc.)
Memory
RAM, ROM, Buffers, Shift registers
Control
Finite state machine (PLA, random logic.)
Counters
Interconnect
Switches
Arbiters
Bus

Bit-Sliced Design

Bit 3

Bit 2

Bit 1

Bit 0

R
eg

ist
er

A
dd

er

Sh
ift

er

M
ul

tip
le

xe
r

Control

D
at

a-
In

D
at

a-
O

ut

Tile identical processing elements

Full-Adder

A B

Cout

Sum

Cin Full
adder

Addition: most commonly used arithmetic operation, also
speed-limiting element.

The Binary Adder

S A B Ci⊕ ⊕=

A= BCi ABCi ABCi ABCi+ + +

Co AB BCi ACi+ +=

A B

Cout

Sum

Cin Full
adder

Express Sum and Carry as a function of P, G, D
Define 3 new variable which only depend on A, B:

G=1 (D=1) ensures that a carry bit will be generated
(deleted) at Co independent of Ci.

P=1 ensures that an incoming carry will propagate to Co.

Sometimes P is also taken as P=A+B
S and Co can be rewritten as functions of P and G (or D):

The Ripple-Carry Adder
N-bit ripple-carry adder: cascading N full-adder circuits in

series, connecting Co,k-1 to Ci,k (k=1~N-1), and set Ci,0=0.
Carry-bit “ripples” from one stage to the other
Delay depends on input patterns: some input patterns has

no rippling effect at all, while for others the carry has to ripple
all the way from LSB to MSB (worst-case delay).

Worst-case delay: tadder≈(N-1)tcarry+tsum
where tcarry and tsum: propagation delays from Ci to Co and S.

Goal: make the fastest possible carry path circuit

The Ripple-Carry Adder
Propagation delay of ripple-carry adder is linearly

proportional to N.
For a fast ripple-carry adder, it’s far more important to

optimize tcarry than tsum, since the latter has only a minor
influence on the total value of tadder.

Inversion Property

A B

S

CoCi FA

A B

S

CoCi FA

Inversion property of full adder: inverting all inputs to a full
adder results in inverted values for all outputs.

Inversion property is useful for optimizing speed of ripple-
carry adder

The following two circuits are identical

Complimentary Static CMOS Full Adder
Static CMOS full adder is implemented as below :
Co=AB+BCi+ACi, S=ABCi+Co(A+B+Ci)
Design tricks: Ci are placed as close as possible to

output→transistors on critical path should be placed as close
as possible to gate output to reduce delay.

Complimentary Static CMOS Full Adder
Static CMOS full adder has large area with slow speed
Long chains of series PMOS in carry and sum circuits
load capacitance of Co is large (consists of 2 diffusion and 6

gate capacitances plus wiring capacitance) (Co connects to Ci
of next stage which takes 6 Ci inputs)

carry circuit requires 2 inverting stages per bit (!Co plus
inverter to get Co)

Minimize Critical Path by Reducing
Inverting Stages

By cascading CMOS full adder and its inversion equivalent
alternately, the extra inverters in carry path to get Co from !Co
can be eliminated →worst case delay of adder is reduced.

The Better Structure: Mirror Adder
Mirror adder: utilize propagate/generate/delete functions
G=AB, D=A B, P=A+B
When D=1 or G=1, Co=1 or 0.
When P=1, Ci is propagated (in inverted format) to Co.

The Mirror Adder
The NMOS and PMOS chains are completely

symmetrical. This guarantees identical rising and falling
transitions if the NMOS and PMOS devices are properly
sized. A maximum of two series transistors can be observed
in the carry-generation circuitry.

When laying out the cell, the most critical issue is the
minimization of the capacitance at node Co. The reduction of
the diffusion capacitances is particularly important.

The capacitance at node Co is composed of four diffusion
capacitances, two internal gate capacitances, and six gate
capacitances in the connecting adder cell .

Transistors connected to Ci are placed closest to output.
Only the transistors in the carry stage have to be

optimized for optimal speed. All transistors in the sum stage
can be minimal size.

Quasi-Clocked Adder
Transmission-gate (TG) based quasi-clocked adder circuit

NMOS-Only Pass Transistor Logic

A
A

B B

C
C

Sum Sum

ACC

B

CoutCout

B

A
A

A A

Transistor count (CPL) : 28

CPL Full AdderCPL Full Adder
20+4×2=28 transistors
Problems with (more than one) threshold drops due to

chaining CPL blocks

NP-CMOS Adder

VDD

φ

φ

Ci0

A0 B0 B0

φ

A0

VDD

φ

B1

φ

A1

VDD

φ

φ

A1 B1

Ci1

Ci2

Ci0

Ci0

B0

A0B0

S0

A0

VDD

φ

φ

VDD

φ

VDD

φ

φ

B1 Ci1

B1

φ

A1A1

VDD

φ S1

Ci1

Carry Path

Dynamic np-CMOS adder: only 17 transistors ignoring
extra inverters required for input/output signals

The alternating even and odd carry stages are realized
using NMOS and PMOS networks respectively

NP-CMOS Adder
Reduced capacitance of dynamic circuits results in

substantial speed-up over static implementation
Load capacitance on carry bit includes 3 diffusion and 4

gate capacitances.

Layout of np-CMOS full adder

Manchester Carry Chain
Manchester carry-chain adder: uses a cascade of pass-

transistors to implement carry chain.
In precharge phase (Φ=0), all intermediate nodes A0~A4

of pass-transistor chain are precharged to “1”.
In evaluation phase (Φ=1), Mk node is discharged to 0

when incoming carry=1 and propagate signal Pk=1, or when
generate signal for stage k (Gk) is 1.

Sizing Manchester Carry Chain

R1

C1

R2

C2

R3

C3

R4

C4

R5

C5

R6

C6

Out

M0 M1 M2 M3 M4MC

Discharge Transistor

1 2 3 4 5 6

tp 0.69 Ci Rj
j 1=

i
∑

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

N
∑=

1 1.5 2.0 2.5 3.0
k

5

10

15

20

25

S
pe

ed

1 1.5 2.0 2.5 3.0
k

0

100

200

300

400

A
re

a

Speed (normalized by 0.69RC) Area (in minimum size devices)

Carry-chain is a distributed RC-network→td=O(N2)
Reducing delay of carry-chain:
insert signal-buffering inverters with optimum stages/sizing
Sizing transistors progressively (IM0>IM1>…>IM4, thus size

of M4 to M0 should be increased progressively.)

Carry-Bypass Adder

FA FA FA FA

P0 G1 P0 G1 P2 G2 P3 G3

Co,3Co,2Co,1Co,0Ci,0

FA FA FA FA

P0 G1 P0 G1 P2 G2 P3 G3

Co,2Co,1Co,0Ci,0

Co,3

M
ul

tip
le

xe
r

BP=PoP1P2P3

Idea: If (P0 and P1 and P2 and P3 = 1)
then Co3 = C0, else “kill” or “generate”.

For ripple-carry adder, if (P0P1P2P3=1) then Co,3=Ci,0
else either DELETE or GENERATE occurred.
Thus if (P0P1P2P3=1), we can directly bypass carry-in Ci0 to

Co,3 to reduce the delay caused by carry propagation. →
carry-bypass adder.

Manchester-Carry Implementation

P0
Ci,0

P1

G0

P2

G1

P3

G2

BP

G3

BP

Co,3

Manchester-carry implementation: either carry propagates
through bypass path, or carry is generated somewhere in the chain

In both cases, delay is smaller than normal ripple configuration.
Area overhead due to adding bypass path: 10~20%.

Delay of Carry-Bypass Adder
Assume total adder is divided in (N/M) equal by-pass stages,

each contains M bits. Total propagation time
tp≈tsetup+Mtcarry+(N/M-1)tbypass+Mtcarry+tsum

where: tsetup: fixed overhead time to create G and P signals,
tcarry: propagation delay through a single bit. The worst-case carry-

propagation delay through a single stage is Mtcarry
tbypass: propagation delay through bypass MUX of a single stage
tsum: time to generate sum of final stage.

Carry-bypass adder delay tp=O(N)

Carry Ripple versus Carry Bypass

N

tp

ripple adder

bypass adder

4..8

Propagation delay of carry ripple adder vs carry-bypass adder
Difference is substantial for larger adders (large N)
Ripple carry adder is actually faster for smaller N
Overhead of extra bypass MUX makes bypass structure not

interesting for small N
Crossover point depends on technology considerations and is

normally situated between 4 and 8 bits

Linear Carry-Select Adder

Setup

"0" Carry Propagation

"1" Carry Propagation

Multiplexer

Sum Generation

Co,k-1 Co,k+3

"0"

"1"

P,G

Carry Vector

Ripple carry adder: every full adder cell waits for incoming
carry before outgoing carry can be generated

To avoid the waiting, anticipate both possible values (0 and 1)
of carry input and evaluate result for both cases in advance

Once the real value of incoming carry is known, the correct
output is selected with a simple MUX → carry-select adder

Hardware overhead: 30% (due to additional carry path and a
MUX

Carry Select Adder: Critical Path
Assume total adder is divided in (N/M) equal by-pass stages,

each contains M bits. Total propagation time
tadd=tsetup+Mtcarry+(N/M)tmux+tsum

where tcarry: carry delay through a single bit,
Mtcarry: carry delay through a single block

Linear Carry Select
Assume full-adder and MUX cells have 1 unit delay each
A major mismatch between the signal arrival times is

observed in the MUX gate of last adder stage
Total delay can be reduced if we equalize the delay through

both inputs of the MUX gate → square-root carry select adder

Square Root Carry Select

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Bit 0-1 Bit 2-4 Bit 5-8 Bit 9-13

S0-1 S2-4 S5-8 S9-13

Ci,0

(4) (5) (6) (7)

(1)

(1)

(3) (4) (5) (6)

Mux

Sum

S14-19

(7)

(8)

Bit 14-19

(9)

(3)

() NttNMttt summuxcarrysetupadd ∝+++= 2

To equalize the inputs to MUX gates of all stages:
progressively adding more bits to subsequent stages in the
adder, requiring more time for the generation of carrysignals

E.g. 1st stage add 2 bits, 2nd stage add 3 bits, 3rd stage add 4
bits, etc.

Adder Delays - Comparison

0.0 20.0 40.0 60.0
N

0.0

10.0

20.0

30.0

40.0

50.0

tp

ripple adder

linear select

square root select

Carry-Lookahead Adder - Basic Idea

A0,B0 A1,B1 AN-1,BN-1...

Ci,0 P0 Ci,1 P1
Ci,N-1 PN-1

...

Carry-lookahead adder: avoid rippling effect of carry in both
carry-bypass and carry-select adders

For each bit position in an N-bit adder:
Co,k=f(Ak, Bk, Co,k-1)=Gk+PkCo,k-1

Dependency between Co,k, Co,k-1 can be avoided by expanding
Co,k-1: Co,k=Gk+Pk(Gk-1+Pk-1Co,k-2)
Finally: Co,k=Gk+Pk(Gk-1+Pk-1(…+P1(G0+P0Ci,0))) (Ci,0=0)

For every bit, carry and sum outputs are independent of
previous bit. The ripple effect has been eliminated. → addition
time should be independent of N.

Carry Lookahead Adder: Topology

VDD

P3

P2

P1

P0

G3

G2

G1

G0

Ci,0

Co,3

Example carry lookahead adder for N=4
It contains some hidden dependencies
Large fan-in makes it prohibitively slow for large N

Logarithmic Look-Ahead Adder
Consider a generic associative operator – dot operation (•)
associatiivity property: (a•b)•c=a•(b•c)
Dot operation of N arguments can be executed with critical

path of (log2N)t• (t•: propagation delay of dot operation)
Ex: For N=8, both designs have same number of operators.
Linear (ripple) topology: critical path delay=7t•
Logarithmic (tree-like fashion): critical path delay=3t•

Logarithmic Lookahead Adder: Brent-Kung Adder

(G0,P0)
(G1,P1)

(G2,P2)
(G3,P3)

(G4,P4)
(G5,P5)

(G6,P6)
(G7,P7)

Co,0

Co,1
Co,2

Co,3

Co,4

Co,5

Co,6

Co,7

tadd ∼ log2(N)

Addition operation is associative
The Binary Multiplication

Multiplication: expensive and slow operation
Multipliers are in effect complex adder arrays
Consider 2 unsigned binary numbers X(M bits) and Y(N bits)

The Binary Multiplication
Common implementation of binary multiplier: similar to

manually computing a multiplication
Multiplicand is consecutively multiplied (AND operation) with

every bit of multiplier → partial products
Intermediate results are added after proper shifting

The Array Multiplier
Array multiplier:
Generating N partial products needs N M-bit AND gates
Requires (N-1) M-bit adders to add N partial results
Shifting of partial results: simple routing (not active logic)
Can be compacted into a rectangle →efficient layout

The M×N Array Multiplier — Critical Path
Propagation delay of M×N array multiplier
Partial sum adders: ripple-carry structures
There are many almost identical-length paths
Propagation delay tmult≈[(M-1)+(N-2)]tcarry+(N-1)tsum+tand
tcarry: delay between Cin and Cout
tsum: delay between Cin and Sum of full adder
tand: delay of AND gate

Adder Cells in Array Multiplier

A

B

P

Ci

VDD
A

A A

VDD

Ci

A

P

A
B

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Identical Delays for Carry and Sum

Minimizing delay of array multiplier requires minimization of
both tcarry and tsum → It helps if tcarry=tsum

A full adder with comparable tsum and tcarry delays using TG
EXOR (24 transistors)

Carry-Save Multiplier
Carry-save multiplier: more efficient
Fact: multiplication result does not change when output carry

bits are passed diagonally downwards instead of to the right
An extra M-bit full-adder is added (vector-merging adder) to

generate final result
carry bits are not immediately added, but are rather “saved” for

next adder stage

Multiplier Floorplan

SCSCSCSC

SCSCSCSC

SCSCSCSC

S
C

S
C

S
C

S
C

Z0

Z1

Z2

Z3Z4Z5Z6Z7

X0X1X2X3

Y1

Y2

Y3

Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcasted
through the complete array.
()

Rectangle floorplan of carry-save multiplier

Wallace-Tree Multiplier

FA

FA

FA

FA

y0 y1 y2

y3

y4

y5

S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

FA

y0 y1 y2

FA

y3 y4 y5

FA

FA

C
C S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

Multipliers —Summary
Optimization goals different from binary adder
Once again: identify critical path
Other possible techniques
Logarithmic versus linear (Wallace tree multiplier)
Data encoding (Booth)
Pipelining
First Glimpse at System Level Optimization

The Binary Shifter
Shifter: used in floating-point units, scalers, multiplications by

constant numbers.
It can be implemented by appropriate signal wiring
A 1-bit left-right shifter: depending on control signals, input

word is either shifted left or right or remain unchanged.
N-bit shifters can be built by cascading 1-bit shifters, but very

slow for large N

The Barrel Shifter

Sh3Sh2Sh1Sh0

Sh3

Sh2

Sh1

A3

A2

A1

A0

B3

B2

B1

B0

: Control Wire

: Data Wire

Area Dominated by Wiring

4x4 barrel shifter

Widthbarrel ~ 2 pm M

Logarithmic Shifter

Sh1 Sh1 Sh2 Sh2 Sh4 Sh4

A3

A2

A1

A0

B1

B0

B2

B3

A
3

A
2

A
1

A
0

Out3

Out2

Out1

Out0

0-7 bit Logarithmic Shifter Design as a Trade-Off

0 10 20
N

0.0

20.0

40.0

60.0

80.0

t p
 (

ns
ec

)

0 10 20
N

0.0

0.2

0.4

A
re

a
(m

m
2
)

look-ahead

select

bypass

manchester

mirrorstatic

manchester

look-ahead

select

static

mirror
bypass

Layout Strategies for Bit-Sliced Datapaths

Well

Control
Wires (M1)

Well

Wires (M1)

GND VDD
GND

GND

VDD

GND

Approach I —

Signal and power lines parallel

Approach II —

Signal and power lines perpendicular

Si
gn

al
s

W
ir

es
 (M

2)

Si
gn

al
s

W
ir

es
 (

M
2)

Layout of Bit-sliced Datapaths

Layout of Bit-sliced Datapaths

(a) Datapath without feedthroughs

and without pitch matching

(area = 4.2 mm2).

(b) Adding feedthroughs
(area = 3.2 mm2)

(c) Equalizing the cell height reduces
the area to 2.2 mm2.

